[K+] dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1)
نویسندگان
چکیده
The effects of permeant (K+) ions on polyamine (PA)-induced rectification of cloned strong inwardly rectifying channels (IRK1, Kir2.1) expressed in Xenopus oocytes were examined using patch-clamp techniques. The kinetics of PA-induced rectification depend strongly on external, but not internal, K+ concentration. Increasing external [K+] speeds up "activation" kinetics and shifts rectification to more positive membrane potentials. The shift of rectification is directly proportional to the shift in the K+ reversal potential (EK) with slope factors +0.62, +0.81, and +0.91 for 1 mM putrescine (Put), 100 microM spermidine and 20 microM spermine (Spm), respectively. The time constant of current activation, resulting from unblock of Spm, also shifts directly in proportion to EK with slope factor +1.1. Increasing internal [K+] slows down activation kinetics and has a much weaker relieving effect on block by PA: Spm-induced rectification and time constant of activation (Spm unblock) shift directly in proportion to the corresponding change in EK with slope factors -0.15 and +0.31, respectively, for 20 microM Spm. The speed up of activation kinetics caused by increase of external [K+] cannot be reversed by equal increase of internal [K+]. The data are consistent with the hypothesis that the conduction pathway of strong inward rectifiers is a long and narrow pore with multiple binding sites for PA and K+.
منابع مشابه
Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine
Inward rectifier K+ channels mediate the K+ conductance at resting potential in many types of cell. Since these K+ channels do not pass outward currents (inward rectification) when the cell membrane is depolarized beyond a trigger threshold, they play an important role in controlling excitability. Both a highly voltage-dependent block by intracellular Mg2+ and an endogenous gating process are p...
متن کاملIRK1 Inward Rectifier K+ Channels Exhibit No Intrinsic Rectification
In intact cells the depolarization-induced outward IRK1 currents undergo profound relaxation so that the steady-state macroscopic I-V curve exhibits strong inward rectification. A modest degree of rectification persists after the membrane patches were perfused with artificial solutions devoid of Mg(2+) and polyamines, which has been interpreted as a reflection of intrinsic channel gating and le...
متن کاملMechanism of the Voltage Sensitivity of IRK1 Inward-rectifier K+ Channel Block by the Polyamine Spermine
IRK1 (Kir2.1) inward-rectifier K+ channels exhibit exceedingly steep rectification, which reflects strong voltage dependence of channel block by intracellular cations such as the polyamine spermine. On the basis of studies of IRK1 block by various amine blockers, it was proposed that the observed voltage dependence (valence approximately 5) of IRK1 block by spermine results primarily from K+ io...
متن کاملBlock of the Kir2.1 Channel Pore by Alkylamine Analogues of Endogenous Polyamines
Inward rectification induced by mono- and diaminoalkane application to inside-out membrane patches was studied in Kir2.1 (IRK1) channels expressed in Xenopus oocytes. Both monoamines and diamines block Kir2.1 channels, with potency increasing as the alkyl chain length increases (from 2 to 12 methylene groups), indicating a strong hydrophobic interaction with the blocking site. For diamines, but...
متن کاملElectrostatics in the Cytoplasmic Pore Produce Intrinsic Inward Rectification in Kir2.1 Channels
Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 108 شماره
صفحات -
تاریخ انتشار 1996